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ABSTRACT

Fatalities caused by highwall/spoilbank failure in the
surface mines, coal and non-metal, increased to an alarming
rate of seven during 1999. To determine the causes of slope
failure and successful mining practices, the National Institute
for Occupational Health and Safety undertook a study. The
study included:

1. A review of accident statistics;

2. A review of Federal and state mining laws pertaining to
surface mining;

3. Aliteraturereview, and;
4. Minevisits.

The study emphasized surface minesin the states of West
Virginia, Ohio, and Pennsylvania.

The review of a decade’s accident statistics using the
Mine Safety and Health Administration’s (MSHA) database
showed that approximately 40% of all ground control related
incidents reported to MSHA occurred in just four eastern
states: Kentucky, West Virginia, Pennsylvania, and Ohio. The
comprehensive literature search provided a historical
perspective of highwall stability issues. Eleven mines were
visited to obtain data on their mining practice or design.
Commoditiesincluded coal, sandstone, and limestone. Based
on the visits, five case studies were developed to represent
typical mining methods and effective ground control practices
used in eastern surface mines. Benching was found to be a
common techniqueto reducethe overall highwall slopeangle.
Decking in the softer zones, such as shale, proved useful in
controlling damage due to blasting.

INTRODUCTION

In recent years, highwall/spoilbank failuresin the surface
mines have resulted in significant loss to human lives,
property, and production. A highwall is aways changing as
the process of extracting coal or ore continues. Thechallenge,
therefore, is to maintain a stable highwall throughout the
mine's operating life. A stable highwall requires an optimum
slope under given conditions. Effective slope designincludes
determining saf e and workabl e bench height, bench faceangle
, and bench width.

To determine the relationship of mine design
parameters/practices and effective ground control in surface
mining, this study was undertaken. It included coal and
nonmetal mines, and consisted of four parts:

* A review of accident statistics for the 1988-1997 period
and Mine Safety and Health Administration’s (MSHA)
accident investigation reports for the 1996-1999 period;

* Areview of pertinent Federal mining laws and the State
laws of Pennsylvania, West Virginia, and Ohio;

e A comprehensive review of relevant published literature
over the past decade; and

» Visitsto eleven operating surface minesrepresentative of
the tri-state area.

Themining laws, both Federal and state, guidethe design
of surface mines; significant regulations are summarized in
Appendix A.

The data obtained from the mine visits was utilized to
prepare five case studies to show the area’s different
geological settings, operating parameters, and effectiveground
control practices under existing conditions.



The knowledge gained from this research will enable better
mine planning so that the health and safety of the surface mine
worker can be improved.
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ACCIDENT ANALYSIS
Period 1988 - 1997

Highwall accident statistics from the MSHA data base were
analyzed for theten-year period for incident frequency, degree of
injury, nature of injury, equipment involved, coal and non-metal
breakdown, worker activity at the time of accident, and other
relevant parameters. Salient results of the analysis are presented
below.

In all, there were 428 accidents caused by the highwall
instability in active coal and non-metal mines. Four mines had
four incidents each, 13 mines had 3, 35 mines had 2, and the
remaining 303 mines had one highwall incident. Thus, atotal of
355 minesreported 428 incidents during the period. Mineswith
multipleincidences, threeand four, arelisted in Appendix B. For
each mine, number of incidents, year of occurrence, failure type
(highwall/spoilbank), degree of injury, and thecommaodity mined
are provided. The table 1 shows the breakdown of all accidents
by degree of injury:

Table 1. Accidents by degree of injury

Degree category (definition) Occurrence, %

O(Noinjury) ..., 5.0
LT(Fatal) ..o 7.0
2 (Permanent disability) ................ 0.0
3 (Daysaway fromwork) ............... 57.0
4 (Days away and restricted activity) ...... 5.0
5 (Days of restricted activity) ............ 4.0
6 (Nodayslost) ....................... 22.0

Total ........ ... 100.0

Of the 28 fatal accidents, the majority (70%) occurred in
non-metal mines. This represents approximately three fatal
accidents per year over the 10-year period. Considering all
accident incidents (428), the distribution between coal and
nonmetal mines is about 50-50. On worker exposure basis, the
incidencerate at surface coal minesis about twicethat at surface
nonmetal mines. Refer to the section on surface mine worker
population.

The428 accidentswere categorized by the natur
caused and are as follows (table 2):

Table 2. Accidents by nature of injury

eof injury

Nature of injury

Occurrence, %

Contusions, bruises .............. 23.0
Multipleinjuries ................ 18.0
Cut, laceration, puncture .......... 17.0
Sprain, strain ................... 8.0
Others* ........ ... ..o, 34.0

Total .......... ... ... 100.0

*Has over 30 injury classifications.

Approximately 26% of all accidents caused by highwall
failure involved heavy earth moving equipment, such as the
drill, front-end loader, dozer, shovel/dragline, and trucks.
Approximately half of theinjurieswere caused whenthefailed
material hit the victim directly. The remaining 24% involved
miscellaneous equi pment items (over 40). Figure 1 showsthis

breakdown.
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Figure 1. Accidents by worker involvement

Handling supplies or material was found to be
most frequent (11%) worker activity when injured,

Victim Hit
Directly
50%

the single
followed

by idle category (7%). Handling explosives, drilling face, and

surface equipment (not elsewhere classified) each

represent

about 6% of all accidents(18% total). Theremaining 64% are
distributed over 80 mine worker activities. Figure 2 shows

this breakdown.
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Figure 2. Accidents by worker activity

Four eastern states, Kentucky, West Virginia, Pennsylvania,
and Ohio, experienced some 40% of all highwall incidents during
the study period.

Accident narratives do not provide accurate information on
thesizeof rock falls. It can generally be estimated that about 50%
of highwall instability incidents are caused by falling of small
rocks or fragments.

A review of months of incident occurrence does not provide
asignificant correlation. In other words, winter months were not
significantly accident prone due to freeze-thaw cycles.

Current Data

MSHA's Fatalgrams and accident investigation reports were
reviewed for fatalitiesin 1998 and 1999. In 1998, there was one
highwall failure accident in acoal operation. 1n 1999, there were
seven fatalities, four in coal and threein non-metal mines. Thisis
over two-fold increase compared to the average of approximately
three fatalities per year during the ten-year study period. Salient
findings/data for the eight accidents are presented below.

Two accidents were caused when spoilbank collapsed, the
remaining six resulted due to falling rock from the highwall of
active mining operations. In three cases, failed highwall material
directly hit thevictim; whereas, workerswere operating equi pment
in the remaining situations. The equipment involved in the
accidents include highwall drill, excavator (shovel), and truck.
The occupation of workersincluded all phases of operations, i.e.,
truck driver, drill operator, excavator/shovel operator, and a
company owner.

The size of rock falls varied between unspecified amount to
massive or extremely large. Some reports mentioned the size as
one kilogram, one tonne, and several tonnes.

Best practices, recommended by MSHA, to avoid the
accidents were given as:

«  Examine and monitor highwall often.

*  Follow ground control plan.
»  Train minersto recognize hazardous highwall conditions.
e Scale-down or support the hazardous highwall areas.

*  Keep drill and other mobile equipment operators away
from highwall face or highwall hazards by positioning
them in safe locations.

e Employ mining methodsthat will maintainwall, bank, and
slope stability in places where persons work or travel.

»  Provide adequate berms to prevent over-travel at dump
locations.

MSHA’ saccident investigation reportsfor the 1996-1999
period were thoroughly analyzed. Twelve fatality reports are
summarized in Appendix C. The table includes data such as
the commaodity mined, types of failure, accident description,
worker activity at the time of accident, weather conditions,
citations, victim’'s occupation, equipment involved, and the
height of highwall.

SURFACE MINE WORKER POPULATION

Mine Injury and Worktime, Quarterly from MSHA
provided approxi mate surface mine employment datafor 1998:

Commaodity No. of workers
Coal (includes anthracite and contractors) . 36,350
Non-metal (includes stone and contractors) 68,300
Total ....... ... ... 104,650

As can be seen from the above, over 104,000 workers are
exposed to the hazards of highwall instability in the United
States mining industry.

LITERATURE REVIEW

Literature review pertaining to slope stability is provided
below in three categories.

Mine Planning and Design

Mining parameters in a surface mine are influenced by
strata conditions and their subseguent design for actual mining
process. The structural aspects of overburden and floor
material play a significant role in the predictive behavior of
rock masses in response to the mining operations, especially of
highwall stability and the formation of spoil dumps (1), and
therefore, the choice of mining parameters. These parameters
include bench width, height, and slope angle.



Planning of open-pit mines on a business-risk basis (2)
emphasi zesthat confidencefor slope design should be categorized
using the same fundamental approach asthat adopted for resource
definitions—such as proven and possible reserves. For example, a
proven slope anglerequiresthat the continuity of the stratigraphic
and lithological units within the affected rock massis confirmed
in space from adequate intersections. A possible slope angle,
whereas, corresponds to typical slope angles based on experience
in similar rocksand along discontinuities. A risk balance between
mineral resources and slope angle is needed for developing
efficient mine plans.

Study of South Wales open-pit site (3) provides significant
relationships between the slope design and structural geological
factors. The geological parameters that are most relevant to rock
slope stability are:

e Thepersistence, attitude, and nature of discontinuitieswithin
the rock mass.

»  The shear strength characteristics both within the rock mass
and along discontinuities.

e Therock density.

e Thepotential for build-up of water pressure in the rock mass
and in tension cracksin rock slopes.

Bedding planes are the most common through-going
discontinuities, followed by joints, in coal measure sequences.
Transcurrent (strike-dip) faults, unless major, do not lead to slope
instability. Open-pit designs should attempt to avoid the presence
of adversely oriented structurally controlled discontinuitiesin the
highwall.

Gregg River Mine (4) in Alberta, Canada, had two highwall
slopes 160 and 219.5 m (525 and 720 ft) high excavated in a
dipping stratain approximately the same lithol ogic and structural
environment. In the earlier phase of mining, the highwall
experienced instability. Inthelater phase, using flatter bench face
angles, the slope did not experience any significant movements.
It wasfound that 50° bench face angle prevented toppling failure.
Also, horizontal drain holes in critical areas of slope were
successful in keeping water away.

A slopestability analysisperformed at the Beulah lignitemine
(5) indicated that most failures werein spoil piles more than 27.4
m (90 ft) high. Circular arc failures mostly occurred when the
spoil slope weretoo steep for the height. The study recommended
decreasing the pit width and lowering the overall slope angle by
use of aspoil bench.

Mining Practice

Controlled blasting methodsarecommonly usedin Australian
mines (6) to maintain pit wall stability. The methods include
cushion blasting, pre-splitting, post-splitting, and using them with
production blasts. Pre-splitting requires arow of closely spaced
blast holes drilled along the design excavation limit, charged very

lightly and detonated simultaneously before the blast holesin
front of them. It gives better results than post-splitting but is
costly. It is suitable for situations where rock strength is
moderateto very highwith few joints. Thedesired resultsafter
excavation is a clean face with the hole traces visible on the
final wall. Cushion blastingisthe simplest and |east expensive
smooth wall blasting technique. It requiresthe back row holes
lightly charged and are del ayed sequential ly and detonated after
the more heavily charged production hole in the front. Post-
split or trim blast consists of arow of parallel, closely spaced
blast holes drilled aong the pit limit. The holes are charged
lightly and fired after the production blast holes have
detonated.

In the United States, poor highwall stability is contributed
partly by faulty blasting practices (7). In these cases, the
explosive energy not only fracturestherock to beexcavated but
also the rock that borders the excavation.

Operating costsin open-pit mines (8) are afunction of pit-
wall angle. Asthepit-wall is steepened, lesswaste rock hasto
be mined which results in reduced blasting, excavation, and
transportation requirements. In addition, there are dewatering
coststhat include engineering design, installation of horizontal
drains or wells, pumping, and water treatment. A decision
analysisframework was used to assess the economic benefit of
pit-wall depressurization in open-pit mines. The framework
can be used to evaluate each proposed pit-wall configuration
and dewatering system design and identify the optimum
alternative.

Effective mountaintop removal operations in West
Virginia (9) require sound engineering practices. The mining
begins by clearing the trees from the permitted area so that
wood is nhot commingled with the waste. A contour cut isthen
made on the lowest mineable seam. This mining provides
control drainage and a bench to prevent the downslope
placement of material. This is done with a large front-end
loader and end-dump trucks haul overburden to a valley fill.
After the contour cut is completed and appropriate drainageis
in place, pre-stripping for the dragline begins.

Examination and Monitoring

The need for predicting movements of large-scale slope
failureisgreat considering the operation hazardsrelated to the
displacement. The focus of this study (10) was to predict
futuredisplacement. Fourteen slopefailuresthat progressed to
partial or total collapse were reviewed. Monitoring of
instability in coal and non-coal mines in South America was
accomplished through the use of both wire extensometers and
EDM prism surveying at the surface. In a Colombian coal
mine, athough total collapse of the slope did not develop, a
greatly accelerated movement of 20.4 m (67 ft) did occur over
afour-hour period. The slope failure involved sliding along
non-daylighted, clay-shale bedding surfacesto adepth of 10.1
m (33 ft). Bedding and slope angle varied from 18to 22° inthe
121.9 m (400 ft) high footwall slope.



Middelburg Mine, South Africa, has been experiencing
highwall stability problems. The highwalls at this mine are
vertical, between 15.2 to 35.4 m (50 to 116 ft) high and are
normally aligned to suit lease boundaries. The problems include
potential toppling failure against the pre-split line and plane
failure along jointsin therock mass. The mine management (11)
has developed a rating system to identify and demarcate the
problem areas. Some of the aspects covered include:

»  Bench height — higher benches being higher risk.

*  Work still to be done — subsequent blasting and loading of
two seams and partings being high risk; low risk if not much
work needed.

*  Presence of water.
»  Presence of potential plane or wedge failures.
e Overhang or poor pre-split problems on the highwall.

Microseismic monitoring of a slope failure was attempted at
the Cardinal River open-pit minein Alberta, Canada, in the mid-
eighties(12). Theproject wasnot fully successful, but pointed out
problems associated with microseismic procedures applicable to
steep coal seams and geologically disturbed surroundings.

Eagle Butte Minein Wyoming provides numerous challenges
from geotechnical stand-point as the coal seam is33.5 m (110 ft)
thick, and overburden and interburden are weak with underclay at
the mine site. In addition, a major sand channel complicates the
stability conditions. Successful extraction of coal at thismineis
contingent upon having a sound geotechnical mine plan and an
effective slope monitoring program. A suite of field techniques
have been employed in geotechnically sensitive areas which
include surveying displacements, graphing displacements against
time, field inspections, and setting stakes along displacement
cracks (13).

Surveying methods have found widespread use as a means of
monitoringwall stability in Australian open-pit mines(14). These
methods include regular visual inspection on foot, in areas of
concern; go/no-go switches across a crack; posts placed on either
side of movement zoneswith measurement by avernier calliper or
tape; surveying methods including angular intersection and
electronic distance measurements, and borehole extensometers
with a depth gauge or displacement transducer. Other methods
that may find use include:

e Terrestrial photogrammatic methods.
* Inclinometers.

e Global positioning systems.

* Radar.

e Timedomain reflectrometry.

MINE VISITS

Eleven coal and non-metal mines were selected for mine
visits. The purpose of the visits was to obtain relevant
information form mine managers/engineers who are involved
in the design of surface mines and highwall stability. The
mines were selected based on parameters to include the
distribution and frequency of highwall accidents, geography,
geology, material mined, management, mining method, and
equipment employed.

In addition to gathering information from the mine
personnel, an operating surface mine was visited at each
location. The mine visits covered parts of West Virginia,
Pennsylvania, and Ohio. Materials mined include coal
(anthracite and bituminous), limestone, and sandstone. Of the
eleven mines, eight are coal, two limestone, and one sandstone.
Figure 3 shows the general location of these mines in the
eastern United States. Five case studies are provided to
represent the mining practices and saf ety aspects of the study
area. Typicaly, a case study addresses the geological setting
and operationa parameters (bench width, height, and slope
angle) in amining area for effective ground control. Figure 4
shows the geological settings and operational parameters for
the five case studies.

Key:
® coal
B Nonmetal

Figure 3. Genera mine location map
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Figure 4. Geological settings and operational parameters

This study was limited to a small mining region with
generally good geologic/mining conditions. Complex slope
stability problems, therefore, were not encountered.
Additional minesthroughout the united States may need to be
studied for answers to difficult ground control issues.

Case Study 1- Coal, Mountaintop Removal

Five coal seamsare mined inbenches (upto9), two being
the main seams each with about 2.7 m (9 ft) thick coa and
separated by approximately 77.7 m (255 ft) of interburden.
The overburden over the upper seam is about 29 m (95 ft),
massive sandstone. The interburden mostly consists of
sandstone and shale with bands of clay, and number of coal
seams. The stratais almost horizontal and can be considered
strong (good rating for stability purposes). The benches are
15.2 m (50 ft) high and plus 4.6 m (15 ft) wide. Highwallsin
theareatypically average 30.5 m (100 ft) and are about 15° of f
vertical. Haul roads are 30.5 m (100 ft) wide with maximum
grade of 10%. Berms are maintained at 1.2 m (4 ft) or truck
axle height.

Highwalls are visually examined three or four times per
shift. Smaller chargesand moredecksare used in softer zones
(shale and clay) for controlled breakage within and outside
blasting area. Scaling is done using dozers, end loaders,
shovels, and dragline.

Case Study 2—Coal, Mountaintop Removal and Contour

Two coal seams are mined in three benches, the upper
seam coal being of 2.4 m (8 ft) thick and the lower one about
1.8 m (6 ft). Both seams are separated by approximately 41.1
m (135 ft). Overburden over the upper seam is massive
sandstone, 71.6 m (235 ft) thick. Theinterburden between the

seams is mainly sandstone with bands of clay, shale, and a
number of coal seams. The strataisamost horizontal and can
be considered strong (good rating for stability purposes). The
benches are 30.5 m (100 ft ) high and 9.1 m (30 ft) wide.
typically, highwalls are approximately 30.5 m (100 ft) high.
They, however, reach up to 106.7 m (350 ft) in places. The
highwalls are nearly vertical (off 10°). Haul roadsare 38.1 m
(125 ft) wide with berms maintained at truck axle height. Pre-
splitting is done by blasting a row of holes before production
shots.

Highwalls are visually examined three or four times per
shift. During adverse weather conditions (snow and rain), the
spoilbanks are carefully examined. Attempt is made at all
times to compact the spoil material to safe angle (<50°).
Scaling is done using dozers and backhoe.

Case Study 3—Limestone, Benching

The overburden over alimestone deposit consists of soil
and loose limestone rock, about 19.8 m (65 ft) thick. The
limestonebed liesvertically and ismined for approximately 61
m (200 ft) in depth. The general areas has minor faults and
folds, and the mineral bed can be considered strong (good
rating for stability purposes).

Mining is done in four benches, 15.2 m (50 ft) high by
15.2 m (50 ft) wide each, keeping highwalls nearly (8° off)
vertical. The maximum highwall height in thiscaseis 15.2 m
(50 ft). Haul roads are about 18.3 m (60 ft) wide with berms
maintained at somewhat more than the truck axle height.
Highwalls are visualy examined three times per shift.
Hazards are removed when they pose danger to workers or
equipment. Scaling is done with a hydraulic excavator.



Case Study 4—Coal, Area Stripping

The overburden over a 1.2-m (4-ft) coal seamis49.1 m
(161 ft) thick, comprising of claystone, shale, sandstone,
limestone, and shaley sandstone. Magjority of the geologic
column (39.6 m (130 ft)) can be divided into two groups-18.3
m (60 ft) sandstone and 21.3 m (70 ft) shale. The strata is
horizontal and can be considered strong (good rating for
stability purposes).

Highwallsin theareaaverage 38.1 m (125 ft) high, nearly
6° off vertical. Typically, two separate lanes (plus 12.2 m (40
ft) wide each) are used for hauling material, onefor empty and
the other for loaded trucks. Bermsare maintained at 1.8 m (6
ft) (plus truck axle height). Highwalls are visually examined
three times per shift. Visual indicators (cracks, overhangs)
trigger more intensive scaling efforts. Also, frequency of
inspection increases to four times per shift during adverse
weather (snow and rain) conditions. By continued
experimentation, the current blasting design is arrived at to
provide smooth/clean highwalls. Scaling is done by a
dragline.

Case Study 5-Limestone, Contour (Open-pit)

The overburden over a 16.5-m (54-ft) limestone deposit
is soil, sand, and gravel, about 12.2 m (40 ft) thick, most of
which was mined earlier. Thelimestone bed ishorizontal and
massive, and can be considered very strong (excellent rating
for stability purposes).

Mining is donein one bench, 16.5 m (54 ft) high by 12.2
m (40 ft) wide, keeping highwalls vertical. The maximum
highwall height in this caseis 16.5 m (54 ft). Haul roads are
about 24.4 m (80 ft) wide with berms maintained at truck axle
height. Pre-splitting is done by blasting a row of holes prior
to production shots. Highwalls are examined visually each
shift. Any cracks and loose material that have potential for
failure are corrected immediately. Scaling is done using end
loadersand backhoes. Blasting pattern wascarefully designed
to minimize damage to the nearby structures.
\

CONCLUSIONS

e Considering al accident incidences, the distribution
between coal and nonmetal mines is about 50-50. On
worker exposure basis, the incidence rate at surface coal
minesis about twice that at surface nonmetal mines.

* In half the incidents, the workers get injured when the
failed highwall material hitsthemdirectly. Workersinall
occupations are vulnerable to the highwall failure
incidents.

* No single worker activity stands out to be the most
accident prone. Just being at the pit, working or idle, puts
the worker at risk.

* Approximately 50% of highwall accidents are caused by
falling of small rocks or fragments.

About 30-m (100-ft) highwalls can be maintained in
stable conditions if the area strata is strong, such as
massive sandstone. These highwalls are nearly vertical
(off 5t0 15°) to vertical.

Benching improvesthe stability of highwalls. Thebench
height normally does not exceed 15.2 m (50 ft) if the
stratacomprisesof multiplecoal seams, shal e, sandstone,
and limestone, making it somewhat weak.

Pre-splitting in hard, massive rocks provides smooth
highwall face, improving resource recovery without
compromising highwall safety.

Blasting pattern should be specifically designed for each
mine site. Decking or small charges, in soft rock zones
(shale and clay) minimizes damage to the highwall.

Spoilbanks, at all times, should be kept compacted to a
safeangle (lessthan 50°). Thorough visual examinations
are needed in adverse weather (rain and snow)
conditions.

Berms along the haul roads and dump areas need to be
maintained at more than the truck axle height, preferably
by 0.3 m (1 ft).
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APPENDIX A.-FEDERAL AND STATE LAWS

Significant regulations pertaining to surface mine design
are paraphrased in this appendix. For details and complete
language, refer to particular stipulationsin the relevant book.

FEDERAL REGULATIONS

Code of Federal Regulations, 30, Minerals Resources,
stipulates regulations for coal and non-metal resources using
surface mining methods. It providesguidancefor minedesign
including ground control coal, crushed stone, and non-metal
mines.

Coa

Part 77, subpart K provides regulations for coa and
significant regulations are discussed
below.

e Each operator shall establish and follow aground control
plan for the safe control of al highwalls, pits, and
spoilbanks, which shall be consistent with prudent
engineering design and insure safe working conditions.
The mining methods employed by the operator shall be
selected to insure highwall and spoilbank stability. A
copy of such plan shall befiled with the appropriate coal
mine health and safety district office.

e Loose hazardous material shall be stripped for a safe
distance from the pit top or highwall and the loose
unconsolidated material shall be sloped to the angle of
reposeor barriers, baffle boards, screens, or other devices
be provided that afford equivalent protection.

» Toinsuresafe operation, thewidth and height of benches
shall be governed by type of equipment to be used and
operation to be performed.

e Highwall banks, benches, and terrain sloping into the
working areas shall be examined after each rain, freeze,
or thaw before men work in such areas, and such
examination shall be made and recorded. Overhanging
highwalls and banks shall be taken down and other
unsafe ground conditions shall be corrected promptly, or
the area shall be posted.

e Hazardous areas shall be scaled before any other work is
performed in the hazardous area. When scaling of
highwalls is necessary to correct conditions that are
hazardous to persons in the area, a safe means shall be
provided for performing such work. Whenever it
becomes necessary for safety to remove hazardous
materialsfrom highwallsby hand, the hazardous material
shall be approached from a safe direction and the
material removed from a safe location.

 Men, other than those necessary to correct unsafe
conditions, shall not work near or under dangerous
highwalls, and those involved in repair work shall take
specia safety precautions.

Non-Metal and Crushed Stone

Part 55.3 addresses ground control of non-metal mines
and Part 56.3 covers crushed stone operations. Regulations
for both are identical and include the above stipulations for
coal. Thereare, however, afew additions asdiscussed below:

e Material, other than hanging material, to be broken by
secondary drilling and blasting, shall be blocked to
prevent hazardous movement before persons commence
breaking and will work from a safe location, if the
material movement occurs.

e Ascaling bar of sufficient length shall be provided where
manual scaling isrequired.

*  When rock bolts are used for ground support, anchorage
test procedures shall be established and tests will be
conducted to determine the anchorage capacity of rock
bolt installation.

STATE MINING LAWS

State mining laws for the three states that pertain to
surface mine design including ground control are presented
below.

Pennsylvania

For anthracite mines, while excavating, the spoilbanks
and earth cuts shall be sloped no more than 45°. An
examination shall be made at frequent intervalsto determine
if danger exists from slides or overhang and when such
conditions present, they shall be immediately corrected.
Chapter 77, Title 25 of the Pennsylvania Code deals with
noncoal miningand pertinent regul ationsarediscussed below.



*  The maximum height of the working face of a bench in
consolidated material may not exceed 15.2 m (50 ft), and
that in unconsolidated material may not exceed 7.6 m
(25 ft). A waiver may be granted for greater or lower
working heights if geologic and safety considerations
(stability analysis) so require. The minimum width for a
horizontal bench between successive working faces shall
be 7.6 m (25 ft).

e An operator shall provide a stability analysis when
requesting a waiver for developing greater than 15.2 m
(50 ft) face. The analysis shal include a stereo net
analysis or equivalent for the working face strata. Man-
made features within a distance equivalent to three times
the maximum proposed depth of the pit measured from
the maximum lateral extent of thefinal working faceshall
beidentified.

»  There are no specific regulations for surface mining of
coal that pertain to slope stability.

West Virginia

Regulations for open-pit coal and limestone mines are
identical and are provided in Title 56, Series 6 and 7,
respectively, which originate from the Office of Miners
Health, Safety and Training. Significant stipulations are
presented below.

» Highwall overburden shall be sloped to minimize slides
and overhanging ledges and all |oose material scaled.

* If thehighwall shows evidence of movement, or appears
to be weakened in anyway, the areas shall be made safe
or abandoned and dangered off.

» Blasted material shall be loaded in such a manner as to
minimize the danger of rock slides endangering
workmen.

* Regulations for quarry operations are included in Title
56, Series 3. Significant stipulations are as follows,
which are in addition to the above.

*  When abench is required to insure safe operations, its
width and height shall be governed by the type of
equipment to be used, the operations to be performed,
type of material, and height of the walls.

»  Spoilbanksshall be kept free of bodies of water and spoil
material shall be sloped to the angle of repose or other
measures taken to prevent the material from sliding into
the pit.

Ohio
Ohio state mine safety laws do not have specific

requirements pertaining to the highwall/slope stability in coal
and non-metal surface mines.

APPENDIX B. HIGHWALL FAILURE- MINESWITH MULTIPLE
INCIDENCES (MORE THAN TWO) 1988-1997

Line ref. Mine, state Y ear Commodny Highwall/spoilbank D.eg.ree of . No. of  Fatlities
mined injury  incidences
1 Coal mine, AL 90,91,92,92 Coad Highwall 3 4
2 Coal mine, KY 90,91,91,92 Coal 1 Spoilbank, 3 Highwall  6,3,3,3 4
3 Coal mine, PA 91,91,93,93 Coad Highwall 1,3,3,0 4 One
4 Coa mine, WV 92,92,94,95 Coad Highwall 6,3,3,3 4
5 Coal mine, IL 89,91,92 Coal Highwall 3,33 3
6 Non-metal mine, KY 91,91,97  Stone Highwall 4,3,5 3
7 Non-metal mine, KY 90,90,95  Stone Highwall 1,6,6 3 One
8 Coa mine, MT 93,94,94 Coad Highwall 0,0,0 3
9 Non-metal mine, PA 90,9595  Slate Highwall 6,3,3 3
10 Non-metal mine, VT 92,94,96 Granite Highwall 3,14 3 One
11 Coal mine, PA 88,89,90 Coad Highwall 6,0,3 3
12 Non-metal mine, VT 94,9495  Slate Highwall 3,33 3
13 Non-metal mine, WA 95,9595  Stone Highwall 1,31 3 Two
14 Coa mine, WV 90,90,92 Coal Highwall 3 3
15 Coa mine, WV 93,94,94 Coal Highwall 3,3,6 3
16 Coa mine, WV 89,90,96 Coal Highwall 1,6,3 3 One
17 Non-metal mine, MO 88,88,91  Stone Highwall 6,6,3 3

Source: Mine Safety and Health Administration
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